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Abstract-With the completion of an experimental study of the dispersion characteristics of fiber-reinforced
viscoelastic materials, a sufficient body of information has been generated to demonstrate the feasibility of
separating viscoelastic dispersion from the total dispersion spectrum of this class of material. The basic
procedure for the separation is to construct a homogeneous viscoelastic constitutive equation for the
composite and to use cross plots of the viscoelastic characterization with the total dispersion spectrum of the
composite to reveal the influence of viscoelastic dispersion on the total spectrum. Two methods of
constructing the homogeneous model are discussed and the results are compared with experimental data.

INTRODUCTION

The dispersion characteristics of a composite material with a viscoelastic constituent is
determined by two dispersive mechanisms. The first, viscoelastic dispersion, results from the
viscoelastic nature of the composite, and the second, geometric dispersion, results from the
internal geometry of the composite. Either of these two mechanisms may dominate the other or
they may act in unison, depending on the time scale of the experiment and the particular
composite used. To help clarify the roles played by these two mechanisms, two methods have
been devised to separate viscoelastic dispersion from the total dispersion spectrum of a
viscoelastic composite. The methods are detailed in this paper and two examples are offered.

Recently, Sutherland [1] has completed a study of the dispersive characteristics of two
fiber-reinforced viscoelastic materials. The first composite studied was a cloth-laminate quartz
phenolic (2D-QP). Its dispersion characteristics (both phase velocity and attenuation vs
frequency) were obtained at seven temperatures, ranging from 4·4 to 40·0°C. The second material
studied was stainless steel wires embedded in an Epon 828-Z matrix (EPON-SST). Its dispersion
characteristics (phase velocity vs frequency) were determined at five temperatures, ranging from
5·0 to 41·7°C.

With this information, the separation of viscoelastic dispersion from the total dispersion
spectrum of this class of composites may be demonstrated. The basic procedure for the
separation is to construct a homogeneous viscoelastic constitutive equation for the composite
and to use cross plots of the viscoelastic characterization with the total dispersion spectrum of
the composite to reveal the influence of viscoelastic dispersion on the total spectrum.

This paper details two methods by which the homogeneous viscoelastic characterization may
be obtained for a particular composite, and the methods are illustrated using the data cited above.
The first method used to construct the homogeneous characterization employs the low-frequency
dispersion spectrum of the composite at several temperatures and the principle of
time-temperature superposition. This method is not dependent on a knowledge of the constituent

tThis work was supported by the United States Atomic Energy Commission.
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properties and is illustrated using the 2D-QP data. The second method employs a quasi-static
homogeneous model that has been proposed to describe the behavior of unidirectional wires in a
viscoelastic matrix. When the model is transformed to the dynamic regime, it allows one to
predict the dynamic, homogeneous viscoelastic behavior of the composite from the constituent's
properties. This method is illustrated using the EPON-SST data.

ANALYSIS

Viscoelastic analysis

In one dimension, let us assume that for low strain rates the composite behaves as a linear,
homogeneous viscoelastic solid; namely, its response to small displacement gradients
au(x,t)/ax (i.e. small strains at the material point X and time t) is governed by the linear
hereditary law [2, 3]

a(X,t)=G(O)au~~t)+ Loo

G'(S)au(~';-S)dS (1)

for a the longitudinal stress. The function G(s) is the longitudinal stress relaxation function and
G'(s) = dG(s)/ds. Here we are interested in solutions of Eq. (1) and the dynamical field equation
for a traveling sinusoidal wave. The solution has the formt

u(X, t) = uoRe {exp [-(a + iw/C)X] exp (iwt)}. (2)

In general for viscoelastic materials, the phase velocity C>O and the attenuation a> 0 will be
functions of the frequency w > O. In fact, it has been shown [4] that the solution (2) is admissible
if and only if

pRC 2(W) = !G(O) + G'(w)1 sec2 [4I'(w)],

a(w) = [w/C(w)] tan [4v(w )],

where PR is the reference density, the phase angle v(w), OSv <~7T, is defined by

1m [G(O) + G'(w)]
tan v(w) = Re [G(O) +<1'(w)]'

and G'(w) is the Fourier transform

G'(w)= Loo

G'(s)exp(-iws)ds.

(3)

(4)

(5)

(6)

Assuming that the temperature dependence of G may be incorporated into Eq. (1) through a
time shift that is defined by the principle of time-temperature superposition,t the effect of a
temperature change from T 1 to To is to shift the time scale by a factor of a,.§ Thus, if G(t) is

tThe notation Re and 1m are used to denote the real and imaginary parts of a complex function.
tThe assumption that the principle of time-temperature superposition holds for the composite is based on the fact that if

this principle holds for the viscoelastic matrix, then the homogeneous model of Hashin[5] indicates that it holds for the
composite. See also Sutherland and Calvit[6] for further verification of this assumption.

§The longitudinal stress relaxation modulus GU) also will be shifted by the temperature change from T1 to To, see
Ferry [7]. This shift is small in comparison to experimental errors and is not considered in this analysis.
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known at temperature To then at T" G(t) is given by

Ferry [7] has shown that at is related to a temperature change in the following manner:
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(7)

(8)

where 6.Ha is the apparent activation energy for the relaxation or retardation processes, R is the
gas constant, Tg is the glass transition temperature, and To is the reference temperature.
Introducing the time-temperature shift factor into Eq. (1),

(9)

Sutherland and Calvit[6] have shown that the solution of Eq. (9) proceeds as described above,
and that the effect of a temperature change on the phase velocity C and attenuation a is

C(W)IT~Tl = C(wa,)]r=To,

a(w)IT~Tl = ata(wa,)IT-To'

(10)

(11)

Equations (10) and (11) describe the superposition of frequency (time) and temperature. Thus, if
the phase velocity and attenuation are known as a function of temperature at some frequency (or
a function of frequency at some temperature), the phase velocity and attenuation are known for
all temperatures and frequencies, within the limits of applicability of Eq. (8).

For the composite, Eqs. (10) and (11) imply that if the phase velocity and attenuation are
known in a frequency range where geometric dispersion is small, then data in this range, taken at
various temperatures, can be used to determine the high-frequency viscoelastic response of the
homogeneous counterpart to the composite. Thus, the composite's viscoelastic constitutive
equation can be obtained over a wide frequency range, without the inclusion of geometric
dispersion, and cross plots of this viscoelastic characterization with actual composite dispersion
spectra will reveal the contribution of viscoelastic dispersion to the total dispersion spectrum.

Homogeneous characterization
Another method by which the homogeneous viscoelastic constitutive equation may be

obtained for the composite is to use one of the homogeneous constitutive models that have been
proposed to predict the quasi-static response of this class of materials. Here, we are concerned
with unidirectional elastic fibers embedded in a viscoealstic matrix. Hashin [5] has proposed a
model which obtains specific relations or upper and lower bounds for the independent moduli in
this transversely isotropic material. Following his example, one may determine that the lower
bound for the longitudinal stress relaxation modulus, G, perpendicular to unidirectional rigid
fibers is given by

(12)



236 H. J. SUTHERLAND

where Om is longitudinal stress relaxation modulus for the matrix material, Vf is the volume
fraction of fibers, Vm is the volume fraction of the matrix, and IJ-m is Poisson's ratio for the matrix.

As the matrix is usually relatively weak compared to embedded fibers, this lower bound for
rigid fibers is probably a very good approximation for the actual quasi-static response of the
composite.

Using Eq. (12) and the viscoelastic analysis discussed previously (Eqs. (1) through (6)), the
homogeneous dynamic response of the composite may be determined. If we assume that
Poisson's ratio for the matrix is not a function of time, then the velocity of an acoustic wave in
the composite, without the effects of internal geometry, is given in terms of velocity function of
the matrix Cm (w) by

C(w) = C
m

(w) IPm 11 +-EL [1+ 2(1- 2IJ-m)],
\j P \j Vm 3 - 4IJ-m

where pm is the density of the matrix, and p is the density of the composite.

EXPERIMENTAL PROGRAM

(13)

Composite materials
The dispersion spectra for two fiber-reinforced viscoelastic materials have been obtained by

Sutherland [1]. The first composite studied was a cloth-laminate quartz phenolic (2D-QP). Typical
cross sections are shown in Fig. 1. The phase velocity and attenuation dispersion spectra, for
harmonic waves traveling perpendicular to the fibers, were obtained at seven temperatures
(40'O°C, 34'4°C, 27·goC, 22·2°C, 15'6°C, 10·0°C, and 4·4°C). Least squares curve fits of the data are
plotted in Figs. 2, 3 and 4 and summarized in Tables 1 and 2. The second composite studied was

Table I. Velocity dispersion spectra for quartz phenolic C=A u +A IX +A,x2 (mml/Lsec)

Independent Temperature Frequency
variable T w

(x) eC) (MHz) Ao A, A,

T - 5 5' T 5' 45 1·0 3·655 - 0·3392 E-2
w 40·0 0·55' w 5' 2·6 3-499 0'3749E-l -0'1711 E-I
w 34-4 0·55' w 5' 2·8 3·534 0'1314E-I - 0·8203 E-2
w 27·8 0·55' w 5' 3·0 3·550 0·2266 E-I - 0·1176 E-I
w 22·2 0·55' w 5'4·0 3·578 0·5685 E-2 - 0·3562 E-2
w 15-6 0·55' w 5' 4·0 30605 0·1035 E-2 -0'2716E-2
w 10·0 0·55' W 5' 4·3 3·610 0·1618E-I -0'5334E-2
w 4·4 0·55' w 5' 4·4 30628 0·1738 E-l -0·5227 E-2

Table 2. Attenuation dispersion spectra for quartz phenolic C = A" +A I W + A,w 2

(nepers/mm)

Temperature Frequency
T w

(OC) (MHz) A" A, A,

40·0 1·45' w 5' 2·6 0·9444 E-I -0'8964E-I 0·3486 E-I
34-4 1·45'w5'2·7 0·3673 E-l -0·3328E-I 0·2057 E-I
27·8 1·45'w5'2·g 0·8955 E-I -0·8152 E-I 0·3053 E-l
22·2 1·45' w 5' 3-2 0·1103 -0·1015 0·3409 E-1
15·6 j·4Sws3·3 0·6304 E-I -0'5636£-1 0·2347 £-1
10·0 1·4 s w 5' 3·6 0·4318 E-I - 0·3946 E-I 0·2005 E-I
4-4 1-4sws3·6 0·6456 E-1 -0,5867 E-1 0·2400 E-I
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Fig. l(al

Fig. l(bl

Fig. 1. Typical cross sections of quartz phenolic.
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stainless steel wires embedded in an Epon 828-Z matrix. A typical cross section is shown in Fig.
5. The phase velocity dispersion spectra, for harmonic waves traveling perpendicular to the
fibers, were obtained at five temperatures (41'7°C, 31'7°C, 22'2°C, 13·3°C and 5·Q°C). Least squares
curve fits of the data are plotted in Fig. 6 and summarized in Table 3.

A complete description of the material properties and fabrication techniques for these two
composite materials is contained in the Appendix.
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Fig. 2. Temperature data for quartz phenolic.
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Fig. 3. Velocity dispersion spectra for quartz phenolic at various temperatures.

Table 3. Velocity dispersion spectrum for EPON-SST C = Ao+A,x +A2x' (mm!/Lsec)

Independent Temperature Frequency
variable T w

(x) (Oe) (MHz) Ao A, A 2

T -105T565 0·5 2·047 -0,3577 E-2
/J) 41·7 0·4"/J) ,,;0·9 1·865 0·3876 -0'6444
w 31·7 0·4,,; w ,,;0·9 1·846 0·5370 -0,7232
w 22·2 0·4,;; w ,,;0·9 1·983 0·2229 -0,5057
/J) 13·3 0·4,;; /J) 50·8 2·012 0-1593 -0-3722
w 5-0 0·4';;w,,;0·8 1-920 0·5950 -0-7532
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Fig. 4. Attenuation dispersion spectra for quartz phenolic at various temperatures.

Fig. 5. Typical cross section of EPON-SST.

Matrix material
The matrix material used in the EPON-SST composite is an Epon 828 resin with a Z hardener.

This material has been characterized by Sutherland and Lingle [8]. They found that the phase
velocity C (mm/#Lsec) was dependent on the reduced angular frequency ot by

C= 2·200 + (l·796E-l) 10gIO 0 - (3'911E-2)(IoglO 0)2 + (7'830E-3)(I0glO 0)3

(5'754E-4)(I0glO 0)" 0 ~ loglo 0 ~ 7. (14)

tThe reduced frequency is the angular frequency w multiplied by the time-temperature shift factor 0" Eq. (8).
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Fig. 6. Velocity dispersion spectra for EPON·SST at various temperatures.

This particular characterization is referenced to the glass transition temperature of 1300e and is
based on an apparent activation energy (see Eq. (8» of 8·9 kcal.

Using the data of Munson and May [9], Poisson's ratio at 25°e was determined to be 0·39 for
this material.

This material is also described in the Appendix.

APPLICATION

Quartz phenolic
The application of the separation technique to the quartz phenolic data is accomplished by a

close examination of the velocity spectra at various temperatures between the frequencies of 0·5
and 1·0 MHz (see Fig. 3). In this region, the slope is positive, which implies that the material is
behaving in a viscoelastic manner. From this slope, one may deduce the apparent activation
energy t1Ha for the composite. Using the summary of data in Table 1, a plot of phase velocity vs
temperature at 0·5 MHz was made along with the similar plot at 1·0 MHz shown in Fig. 2. From
these two plots, t1Ha may be determined from Eqs. (8) and (10). Namely, if

(15)

then

(16)

Using Wj = 0·5 MHz and W2 = 1·0 MHz, Eq. (16) was evaluated over the range of interest. The
resulting average for t1Ha was 36·3 kcaJ (OOe ~ T $ 400 e).t

tSince lJ.Ha is weakly dependent on the volume fractions of the constituents, it should be noted that the apparent
activation energy computed here applies only to the composite considered. As discussed later. the viscoelastic
characterization for the composite may be computed from homogeneous models for particular geometric arrays. but a similar
analysis cannot be used with the 2D-QP data because the bulk properties of phenolic are not well known, and they do change
when reinforcements are added.
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Using an apparent activation energy of 36·3 kcal, a glass transition temperature Til of
181 0C[10], the 0·5 and 1·0 MHz temperature data, and Eqs. (8) and (10), the homogeneous phase
velocity of the composite may be determined as a function of frequency for any temperature of
interest. Doing this at 22·2°C, we obtain the viscoelastic characterization shown in Fig. 7. Also
shown in Fig. 7 is the data obtained from the acoustic experiment at 22·2°C.

A similar comparison may be obtained for the exponential attenuation in the composite. As
the data cited in Table 2 and Fig. 4 are all above the frequency region where geometric dispersion
is small, a special series of tests were run at 1·0 MHz using the direct transmission technique
cited by Sutherland[1]. The attenuation was found to be:

ex = 0·01929 +0'OOOO6912T (nepers/mm), 4°C:5 T:5 45°C. (17)

Using Eqs. (8), (11), (16) and (17), an apparent activation energy of 36·3 kcal, and a glass
transition temperature of 181°C, the homogeneous attenuation of the composite may be
determined. The results at 22·2°C are compared with the acoustic experiment in Fig. 8.
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Fig. 7. Velocity dispersion spectra for quartz phenolic at 22·2°C.

0.15

T=22.2°C
E
..§

~ 0.10.....
Cl.......
Z

5
~ 0.05
E5
~

O. OO';:--t--~-~--t--f----i
056

Fig. 8. Attenuation dispersion spectra for quartz phenolic at 22·ZOe.
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Figures 7 and 8 illustrate the relative importance of viscoelastic dispersion in this composite
and display graphically the effects of its internal geometry on the propagation of waves through
it. In Fig. 7, we see only a comparatively small decrease in velocity, which implies that the data
are relatively far from the cutoff frequency of the first pass band (as previously surmised by
Sutherland [I]) and that the internal geometry of this composite is not very important with respect
to wave velocity. However, this is not the case for attenuation. In Fig. 8, we see a dramatic
increase in the attenuation coefficient with the inclusion of internal geometry. As we are not close
to the cutoff frequency, the attenuation produced by internal scattering is probably small and we
conclude that some type of synergistic effect between viscoelastic and geometric dispersion is
causing the large increase.

Now, rather than compare each spectrum separately, let us transform the acoustic data
containing geometric dispersion according to Eqs. (8), (10) and (11) and compare the results with
the viscoelastic characterizationt. Doing this, we obtain the plot for velocity shown in Fig. 9 and
for attenuation shown in Fig. 10. These plots, and Figs. 7 and 8 imply that for the temperature
range investigated, the phase velocity of the composite is close to a homogeneous viscoelastic
response, but the attenuation may differ markedly from the viscoelastic model.

EPON-SST
A close inspection of the velocity spectra obtained for the EPON-SST composite (see Fig. 6)

indicates that for the frequency range investigated, this material is not behaving as a strictly
viscoelastic material; i.e. nowhere do the spectra have a positive slope. Therefore, the method
used to determine ~Ha, and, thus the viscoelastic characterization, for the 2D-QP cannot be used
here. However, since the Epon matrix is well characterized [8], we may deduce the homogeneous
viscoelastic response of this material by using Hashin's model (i.e. by Eq. (13)), the viscoelastic
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Fig. 9. Summary of velocity dispersion spectra for quartz phenolic.

tThis transformation is only valid for comparison purposes, because time-temperature superposition only holds for linear
viscoelastic materials. However, ambiguities in the abscissa may be easily rectified by referencing the scale to the temperature
of interest.
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Fig. 10. Summary of attenuation dispersion spectra for quartz phenolic.
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characterization of the Epon matrix, Eq. (14), and by assuming a time-independent Poisson's
ratio of 0·39[9]. The lower bound on phase velocity, as a function of the reduced frequency 0,
becomes

C(O) = O'788C", (0), 0 S 10glO (0) S 7, (18)

where C",(O) is given by Eq. (14).
Transforming Eq. (18) to 22·2°C by using Eq. (8) with an apparent activation energy of 8·9

kcal, the homogeneous viscoelastic characterization (Rashin's lower bound) for this temperature,
shown in Fig. 11, is obtained. Along with the viscoelastic characterization, the dispersion
spectrum for the composite obtained at 22·2°C is plotted.
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Fig. II. Velocity dispersion spectra for EPON-SST at 22·2°e.
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Figure 11 illustrates that viscoelastic dispersion plays a minor role in the total dispersion
spectrum of this composite. In contrast to the 2D-QP data displayed in Fig. 7, we note that as the
frequency increases, there is a marked divergence of the composite's velocity spectrum from the
viscoelastic spectrum. This divergence indicates that the data are relatively close to the cutoff
frequency of the first pass band. Further, the importance of geometric dispersion is illustrated in
the low frequency data of the spectrum. As the two spectra do not intercept at the low frequency
data of the spectrum. As the two spectra do not intercept at the low frequency end, geometric
dispersion must still be important in this composite, even at 0·4 MHz. And, indeed, an
extrapolation of the composite's spectrum would indicate that geometric dispersion is important
down to 0·2 MHz.

Again, to compare the acoustic data to the viscoelastic characterization, let us transform the
data according to Eqs. (8), (10) and (11) with /iHa equal to 8·9 kcal. The comparison is shown in
Fig. 12. These plots imply that for the temperature and frequency ranges investigated, the
homogeneous viscoelastic characterization of this material is not an adequate representation of
the composite's behavior.

CONCLUDING REMARKS

Two methods to separate viscoelastic dispersion from the total dispersion spectrum of a fiber
reinforced viscoelastic material have been presented here. The first method constructs a
homogeneous viscoelastic model of the composite from the low-frequency dispersion spectrum
of the composite at several temperatures. The advantages of this method are that very little must
be known about the properties of the constituents and the method is not restricted to any specific
internal geometries. Its main disadvantages are that it requires spectra at several temperatures
and it is restricted to composite materials whose internal geometries have a characteristic
dimension sufficiently small to allow acoustic experiments in a range where geometric dispersion
is small. The second method constructs a homogeneous model from the properties of the
composite's constituents. The obvious disadvantages are that each constituent must be well
characterized and a homogeneous model must be constructed for the composite's particular
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Fig. 12. Summary of velocity dispersion spectra for EPON-SST.



Separation of geometric and viscoelastic dispersion 245

internal geometry, but its advantage is that the spectrum of composite need be determined only at
the temperature and frequency range of interest.

APPENDIX-MATERIAL DESCRIPTION

Cloth -laminate quartz phenolic
The first material studied in this investigation, a cloth-laminate quartz phenolic (2D-QP), was

fabricated from Astroquartz 503 (Bendix Corporation; Kansas City) and Evercoat 201 phenolic
resin (Evercoat Chemical Co.; Santa Fe Springs, California). The quartz cloth was cut to the
desired size, impregnated with phenolic, and stacked in a mold. The composite-mold assembly
was then placed in an oven preheated to 94°C. When the composite's temperature reached 82°C,
the assembly was removed from the oven and placed in a press with platens preheated to 121°C.
When the temperature of the composite reached 94°C, a pressure of 34·4 Mdynes/cm2 was
applied; at 102°C, the pressure was increased to 97·4 Mdynes/cm2

; at 116°C, the platen
temperature was increased to 163°C; and, at 163°C, the pressure and temperature were held for 8
hr. The composite sample produced for this study was 30·5 cm square by 5·08 cm thick with 540
plies. The bulk density was 1·832 gm/cm3

•

This particular fabrication technique was chosen because it produced consistent material
properties and the composite was relatively free of voids. To ensure maximum reproducibility
between the samples, several were machined from the center section of the bulk composite.
Those samples which had the closest match of density and ultrasonic wave velocity at 1MHz and
22·2°C were chosen for the study. Upon completion of the ultrasonic experiments, each sample
was destroyed in a quantiative ash experiment, in order to determine the weight fraction of
quartz. Using the weight fraction of quartz, the bulk densities of silica (quartz), 2·20 gm/cm3

, and
phenolic, 1·26 gm/cm3

, a theoretical density was calculated and the percent void content was
determined. The percent void content was found to vary from 1·4 percent to 1·7 percent in the
three samples [1].

Epon-stainless steel
The second material studied, stainless steel reinforced epoxy, was fabricated by Haveg

Industries, Inc. (Reinhold Aerospace Division; Santa Fe Springs, California) from 0·457 mm dia,
304-stainless steel wires and Epon 828 resin (Shell Chemical Corporation) with Z hardener. The
SST wires were drawn, cut, straightened, and individually placed in a layup fixture at
approximately 250 fibers/cm2 in a square array. After an inspection for misalignment, the layup
was rinsed with methyl ethyl ketone (MEK), acid etched for 10 min in concentrated hydrochloric
acid at ambient temperature, rinsed in flowing water for 5 min, rinsed in distilled water and air
dried, rinsed in MEK, and oven dried and preheated 30 min at 66°C. The resin batch was then
mixed and evacuated. The layup was removed from the oven and placed in a casting mold. After
the resin batch was added and degassed, the resin was cured and then postcured at 122°C.
Samples were cut from the billet.

The specimens obtained in this manner had a 40·7 theoretical volume percentage of stainless
steel, 7·90 gm/cm3

, and the bulk density of Epon 828-Z, 1·202 gm/cm3
, the predicted density of the

composite is 3·93 gm/cm3
• This value compares well with a measured density of 3·85 gm/cm3 [1].

Epon 828-Z
The Epon 828 epoxy (produced by Shell Chemical Corporation) is a condensation product of

epichlorohydrin and bisphenol-A, with no dilutents. Epoxide equivalents are controlled to give
183-195 gram of resin per gram atom of epoxy group. This polymer has physical and mechanical
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properties which depend upon the hardening agent and processing details. Hardener Z is an
aromatic eutectic mixture of methylene dianaline, MPDA (metaphenylenediamine), and phenyl
glycidyl ether. Curing procedure for this hardener was 4 hr at room temperature followed by 4 hr
at 55°C and 16 hr at 93°C. The properties for this cure are very similar to those of the matrix used
in the EPON-SST composite. The glass transition temperature is BO°C and its density is
1·202 gm/cm3 [8, 9].
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